
Tandem Cyclic Alignment

Gary Benson?

Department of Biomathematical Sciences
The Mount Sinai School of Medicine

New York, NY 10029-6574
benson@ecology.biomath.mssm.edu

Abstract. We present a solution for the following problem. Given two
sequences X = x1x2 · · ·xn and Y = y1y2 · · · ym, n ≤ m, find the best
scoring alignment of X ′ = Xk[i] vs Y over all possible pairs (k, i), for
k = 1, 2, . . . and 1 ≤ i ≤ n, where X[i] is the cyclic permutation of X,
Xk[i] is the concatenation of k complete copies of X[i] (k tandem copies),
and the alignment must include all of Y and all of X ′. Our algorithm
allows any alignment scoring scheme with additive gap costs and runs
in time O(nm log n). We have used it to identify related tandem repeats
in the C. elegans genome as part of the development of a multi-genome
database of tandem repeats.

1 Introduction

1.1 Problem Description

The problem we solve is the following:

Tandem Cyclic Alignment

Given: Two sequences X = x1x2 · · ·xn and Y = y1y2 · · · ym, n ≤ m and an
alignment scoring scheme with additive gap costs.

Find: The best scoring alignment of X ′ = Xk[i] vs Y over all possible pairs
(k, i), for k = 1, 2, . . . and 1 ≤ i ≤ n, where X [i] is the cyclic permutation of
X ,

X [i] = xixi+1 · · ·xnx1 · · ·xi−1,

Xk[i] is the concatenation of k complete copies of X [i] (k tandem copies),
and the alignment must include all of Y and all of X ′.

Let X and Y be two strings over an alphabet Σ. An alignment of X and Y (see
section 3.1 for an example) is a pair of equal length sequences X̂ , Ŷ over the
? Partially supported by NSF grants CCR-9623532 and CCR-0073081.

alphabet Σ ∪ {−} where − is a gap character and X, Y are obtained from X̂, Ŷ
by removing the gap characters. An alignment can be interpreted as a sequence
Q of edit operations [6] that transform X into Y . The allowed operations are 1)
insert a symbol into X , 2) delete a symbol in X and 3) replace a symbol in X
with a (possibly identical) symbol from Σ. A scoring scheme defines a weight
for each possible operation and the alignment score is the sum of the weights
assigned to the operations in Q.

There are two widely used classes of scoring schemes, 1) distance scoring, in
which identical replacement has weight = 0, all other operations have weight ≥ 0
and the best alignment has minimum score, and 2) similarity scoring, in which
“good” replacements have weight > 0, all other operations have weight ≤ 0 and
the best alignment has maximum score. Within these classes, scoring schemes
are further characterized by the treatment of gap costs. A gap is the result of the
deletion of one or more consecutive characters in one of the sequences (insertion
into the other sequence). Additive gap costs assign a constant weight to each
of the consecutive characters. Other gap functions have been found useful for
biological sequences, including affine gap costs (α+βk for a gap of k consecutive
characters where α and β are constants) and concave gap costs (α+βf(k) where
f() is a concave function such as square root). The solution in this paper assumes
a scoring scheme with additive gap costs. For ease of discussion, we will, for the
remainder of the paper, assume distance scoring although the results apply as
well to similarity scoring.

Our motivation for this problem arises from an ongoing effort to construct a
multi-genome database of tandem repeats (TRDB). A central task is the clus-
tering of tandem repeats into families i.e. repeats that occur in different locations
in a genome but have identical or very similar underlying patterns. Grouping
these repeats will facilitate identification and study of their common properties.
Tandem repeat families have been detected in both prokaryotes and eukaryotes,
including the E. coli, S. cerevisiae, C. elegans and human genomes.

Clustering requires an effective and consistent means of measuring the similarity
or distance between repeats. Standard comparison methods are not easily applied
to tandem repeats because they contain repetitive, approximate copies of an
underlying pattern. In addition, comparison of related repeats often reveals a
scrambling of the left to right order of the slightly different internal copies.
An accurate comparison method should be insensitive to copy number and copy
order and we have therefore chosen to abstract the repeats as either 1) consensus
patterns or 2) profiles and then compare them using alignment.

Because repeat copies are adjacent, the designation of first position in a consen-
sus or profile is arbitrary. This is not just a theoretical abstraction, the number
of copies in a repeat is often not a whole number and distinct repeats which
are obviously similar often do not start and end at the same relative positions.
Therefore, comparison must allow cyclic permutation of one pattern so that its
first position can be arbitrarily aligned with any position in the other.

Once families are constructed, we can determine interfamily evolutionary rela-
tionships by comparing patterns from different families. In particular, we can
determine if one pattern consists of multiple approximate copies of the other,
again with the property of cyclic permutation. It is this comparison that Tandem
Cyclic Alignment addresses.

1.2 Background

The Tandem Cyclic Alignment problem is a merger of two classes of pairwise
alignment problems, 1) tandem alignment, in which one of the sequences con-
sists of an indeterminate number of tandem copies of a pattern and 2) cyclic
alignment, in which cyclic permutation of one of the patterns is allowed. Three
related problems from these classes are:

Pattern local, text global tandem alignment. Given a pattern X , a text
Y and a scoring scheme for alignment, find the best scoring alignment of X ′ =
Xk[1] vs Y over all k = 1, 2, . . ., where all of Y must occur in the alignment, but
where the part of X ′ aligned with Y need not contain a whole number of copies
of X [1]. The alignment, rather, may start and end on any index of X .

Pattern and text global tandem alignment. Given a pattern X , a text Y ,
an index i, 1 ≤ i ≤ |X |, and a scoring scheme for alignment, find the best scoring
alignment of X ′ = Xk[i] vs Y , over all k = 1, 2, . . ., where all of Y and all of X ′

must occur in the alignment.

Cyclic global alignment. Given sequences X and Y and a scoring scheme
for alignment, find the best scoring alignment of X [i] vs Y over all possible i,
1 ≤ i ≤ |X | where all of Y and exactly one whole (cyclically permuted) copy of
X must occur in the alignment.

The tandem alignment problems are both solved by wraparound dynamic pro-
gramming (WDP) [8, 3] in O(mn) time when the scoring function has additive or
affine gap costs. The cyclic alignment problem can be solved naively in O(n2m)
time by separately computing the alignment of X [i] vs Y for every value of i.
Maes [7] presented a O(nm log n) time solution for scoring schemes with additive
gap costs by observing that there exists a set of best scoring alignments, one for
each 1 ≤ i ≤ n such that the alignments are pairwise non-crossing (below). Lan-
dau, Myers and Schmidt [5] gave a O(n+km) algorithm for unit cost differences
(edit distance) when the score of the best alignment is bounded by k. Their
algorithm, although theoretically efficient, has a large constant factor and is dif-
ficult to implement because it requires constructing a suffix tree preprocessed for
least common ancestor queries. Schmidt [9] gave a rather complicated O(nm)
algorithm for similarity scoring where each insertion/deletion character costs −s
and match/mismatch weights are in the interval [−s, m] for fixed positive integer
values m and s. This method can not be used to compute general distance scores
more efficiently than the Maes algorithm.

It seems natural to adapt the Maes solution to our problem, except for one
difficulty: in tandem cyclic alignment, there may be no set of best scoring align-
ments which are all pairwise non-crossing. What this means is that the number
of copies of X used in an alignment can vary depending on the starting position
i. (For an example see Section 3.1). We show, though, that no alignment can
cross the “same” alignment more than once. This leads to a O(mn log n) time
solution using adaptations of the Maes algorithm and WDP.

The remainder of the paper is organized as follows. In section 2 we give brief
descriptions of the non-crossing alignments property, the Maes algorithm and
wraparound dynamic programming. In section 3 we give the main theorem about
crossing tandem cyclic alignments. In section 4 we then apply this property to
obtain our algorithm. Finally, in section 5 we show an example from our analysis
applied to tandem repeats from the C. elegans genome.

2 Preliminaries

2.1 Non-crossing alignments

When gap costs are additive, a simple non-crossing property of optimal paths in
the two dimensional alignment matrix applies [4, 1, 7]. We present one variation
appropriate for this paper.

Definition. Two paths A and B in an alignment matrix cross if there exist two
rows e and f such that in row e all matrix cells in path A are left of all cells in
path B and in row f all cells in path B are left of all cells in path A. The paths
share one or more common cells where they cross.

Note that sharing cells is not the same as crossing.

Property: Given an alignment matrix (see figure 1, left) and four cells q, r, s
and t with q left of r in the top row and s left of t in the bottom row, for any
optimal scoring path A from q to s, there exists an optimal scoring path B from
r to t such that the two paths do not cross.

Proof. By contradiction, suppose all optimal scoring paths from r to t cross A.
Let B be one such path. A and B must cross an even number of times. Consider
the separate subpaths (labeled A2 and B2 in the figure) in which A is first right
of B proceeding from the top row.

Claim 1: cost of B2 is equal or worse than cost of A2. Otherwise A is not optimal
because joining subpaths A1, B2 and A3 is better.

Claim 2: cost of B2 is better than cost of A2. Otherwise, joining subpaths B1,
A2 and B3 gives a path with score no worse than B, but which does not cross
A. Such a path was assumed not to exist.

q

A2

t

r

s
A3

B3

B2

B1
A1

Y

X X

A1

An + 1An / 2

Fig. 1. (left) Alignments do not cross; (right) the Maes algorithm.

Clearly Claims 1 and 2 lead to a contradiction.

2.2 The Maes algorithm for cyclic global alignment

The Maes algorithm [7] capitalizes on the non-crossing property to bound the
area of the alignment matrix that must be computed for each index i in the
alignment of X [i] vs Y .

First the alignment of X [1] vs Y (call it A1) is computed in O(nm) time. A
new matrix is then constructed which uses two concatenated copies of X vs Y
(figure 1, right). The alignment A1 shifted right (call it An+1) optimally aligns
the second copy of X with Y .

A1 and An+1 bound any alignments which start and end between them. Specif-
ically, they bound the alignment of X [n/2] vs Y (call it An/2). It is easy to see
that this procedure can be followed recursively, for a logarithmic number of steps,
subdividing X into halves, then fourths, etc. always at the midpoints between
bounding alignments. In each step, the alignment score calculations in a matrix
cell are computed once, except for matrix cells on a bounding path, where they
are computed twice (once for the computation in the interval to the left and
once to the right), yielding O(nm log n) as the overall time of the algorithm.

2.3 Wraparound dynamic programming (WDP)

WDP [8, 3] models the similarity computation of Y with an unrestricted number
of copies of X while using an alignment matrix of size nm rather than of size
m2, i.e. using only one copy of X . WDP computes in matrix S[i, j] the optimal
score that would be obtained by aligning Y1 · · ·Yi with X∗X1 · · ·Xj , where X∗

indicates zero or more tandem copies of X . The correctness proof hinges on the

observation that any optimal scoring alignment will not contain a single deletion
of h ≥ n characters of X (n = |X |). This is so because otherwise, another
alignment exists, identical except for having a deletion of only h− n characters,
and possesing a better score. Since WDP examines all alignments with deletions
in X of size < n, it produces the optimal scoring alignment.

The technique involves computing two passes through each row. In both passes,
all cells but the first are treated normally. In the first pass, cell S[i, 1] (corre-
sponding to Yi and X1) is given the better of 1) a value derived from the cell
S[i−1, 1], the first cell in the row above (corresponding to a deletion of Yi) and 2)
a value derived from cell S[i−1, n], the last cell in the row above (corresponding
of a pairing of Yi and X1). This later is a wraparound value. In the second pass,
S[i, 1] receives the maximum of 1) its current value, and 2) a value derived from
S[i, n], the last cell in its row (corresponding to a deletion of X1). This is also a
wraparound value.

3 Crossing Tandem Cyclic Alignments

Here we show that although tandem cyclic alignments may cross, no alignment
can cross the “same” alignment more than once. “Same” in this case means an
alignment that has been shifted one or more full copies of the pattern left or
right, similar to the shifting of the alignment A1 to become An+1 in the Maes
algorithm.

3.1 An example

Let the pattern X and text Y be

X = gaccga Y = accgatacgagacccgagaacgagaccg.

Then, using an edit distance scoring scheme, (match=0, mismatch, indel=1),
the only best scoring alignment of Xk[1] vs Y (with a score of 6) uses 5 copies
of X [1]:

* *
gaccga gaccga ga-ccga gaccga gaccga
-accga ta-cga gacccga gaacga gaccg-

while the only best scoring alignment of Xh[4] vs Y (with a score of 8) uses 4
copies of X [4]:

* *
--cgagac cgaga-c cgagac cgaga-c-
accgata- cgagacc cgagaa cgagaccg

A1

B
A3

A2

q

w

s'
s

r

vt

Y

X XXXXXX
p

Fig. 2. An illustration of Theorem 1.

Since the alignments use a different number of copies of X , they cross and there
is no set of best scoring pairwise non-crossing alignments.

3.2 No alignment crosses the “same” alignment more than once

Theorem 1. Given two sequences, X and Y and an index i, 1 ≤ i ≤ n, let ci be
the number of copies of X [i] in a best scoring alignment of X ′ = Xk[i] vs Y over
all k = 1, 2, . . ., where all of Y and all of X ′ must be included in the alignment
(i.e. ci = k in that best scoring alignment). Then, for any j, 1 ≤ j ≤ n there
exists a best scoring alignment of X ′ = Xh[j] vs Y over all h = 1, 2, . . . such
that cj = h in that alignment and |ci − cj | ≤ 1.

In other words, if a best scoring alignment of Xk[i] vs Y uses c copies of X [i],
then for any j, there is a best scoring alignment of Xh[j] vs Y which uses one
of {c− 1, c, c + 1} copies of X [j].

Proof. Assume that |ci − cj | > 1. We show a contradiction if cj > ci + 1. A
similar argument holds for cj < ci−1. Refer to figure 2. Let A1 be a best scoring
alignment of Xci [i] vs Y and let B be a best scoring global alignment of Xcj [j]
vs Y with smallest cj and let cj > ci + 1. Let A2 be a duplication of A1 shifted
to the right by one copy of X [i] and let A3 be the rightmost shifted copy crossed
by B. (By assumption, A2 and A3 are distinct.)

Let r and s′ be the points, respectively, where B crosses A2 and A3 and let s
correspond to the point on A2 matching s′. Call x � y the part of an alignment
from point x to point y. Let s � t be a duplication of s′ � w in B shifted to the
left. Finally call cost(x � y) the alignment score for x � y (and recall that we
are assuming distance scoring so that smaller cost is better).

Claim 1: cost(r � s′) ≥ cost(r � s). Otherwise, piece together q � r, r � s′ and
s′ � v to get a better scoring alignment than A2. But, A2 is optimal.

Claim 2: cost(r � s′) < cost(r � s). Otherwise, piece together p � r, r � s and
s � t to get an alignment with score no worse than B, and using less than cj

copies of X [j]. But B uses minimal copies.

Claims 1 and 2 produce a contradiction.

4 The Tandem Cyclic Alignment Algorithm

The Tandem Cyclic Alignment problem is solved in three steps. Each step re-
quires first finding a guide alignment and then implementing the Maes algorithm
using the guide as alignment A1. Since we are using tandem copies of the pat-
tern, the Maes algorithm will be implemented as Bounded Wraparound Dynamic
Programming (BWDP) which is described following the outline of the main al-
gorithm:

Step 1: Use pattern and text global WDP (section 1.2) to find the best scoring
alignment of Xk[1] vs Y for k = 1, 2, Call this alignment A. Let the num-
ber of copies of X used in A be c. Use A as A1 in the BWDP version of the
Maes algorithm to find the remaining best scoring non-crossing alignments
for Xc[i] vs Y for i = 2, . . . , n. Call the best scoring alignment from this step
Bc. Save Bc.

Call c∗ the number of copies in the solution to the tandem cyclic alignment
problem. At this point, we have saved the best from the set of cyclic alignments
each of which uses c copies of X , but we do not know if c = c∗. However, by
Theorem 1, we know that c∗ ∈ {c− 1, c, c + 1}.

Step 2: Using A (from step 1) and a copy of A shifted to the right one pattern
length, find the best scoring alignment of Xc+1[1] vs Y using BWDP. Call
this alignment A+ (figure 3). Use A+ as A1 in the BWDP version of the
Maes algorithm to find the remaining best scoring, non-crossing alignments
for Xc+1[i] vs Y for i = 2, . . . , n. Call the best scoring alignment from this
step Bc+1. Save Bc+1.

Step 3: Using A (again from step 1) and a copy of A shifted to the left,
find the best scoring alignment of Xc−1[1] vs Y using BWDP. Call this
alignment A−. Use A− as A1 in the BWDP version of the Maes algorithm
to find the remaining best scoring, non-crossing alignments for Xc−1[i] vs Y
for i = 2, . . . , n. Call the best scoring alignment from this step Bc−1. Save
Bc−1.

Step 4: Choose the best scoring alignment from Bc, Bc+1 and Bc−1.

XX XX

Y A1

A+

A2

XX XX

A1

A -A0

Y

Fig. 3. Finding the guide alignments: A+ (left) and A− (right). BWDP achieves the
same result using only one copy of X.

Time complexity. Each of the three main steps starts with finding a guide
alignment using WDP or BWDP in time O(nm). Then each step finds the re-
maining alignments using the BWDP version of the Maes algorithm in O(nm log n)
time. The total time is therefore O(nm log n).

4.1 Bounded Wraparound Dynamic Programming (BWDP)

BWDP is computed in an alignment matrix W [i, j] of size (m+1)(2n+1), i.e. it
uses two copies of X . We are given two alignments L and R as boundaries. We
assume that L and R are both alignments of Xc[j] vs Y for a fixed c and different
j and that neither crosses outside the pair of “master” bounding alignments
Xc[1] vs Y and its duplicate shifted right one copy of X (or alternately Xc[1] vs
Y and its duplicate shifted left).

We use L and R to obtain, for each row i = 0, . . . , m in the matrix, the left-
most, L[i], and the rightmost, R[i], boundary columns between which alignment
scores will be computed. Finally, we are given an index k, L[0] ≤ k ≤ R[0] as
the starting column for the alignment. Figure 4, left side, shows the bounded
computation as it would appear if we use an unrestricted number of copies of
X . Note that for some i, L[i] may be left of the starting position k or R[i] may
be right of the ending position k + cn. In this case, we contract the boundaries
to the appropriate values.

Figure 4, right side, shows the same bounded computation, but this time, in
an array which contains only two copies of X . When the boundaries exceed the
first two copies of X , the computations wrap around. There is only one question
which must be addressed to guarantee that the BWDP result is the same as the
unrestricted-copies-of-X result. Can the boundaries collide or cross in the space
of only two copies of X (i.e. can R catch up with L as they wrap around)?

leftmost
boundary

rightmost
boundary

k

k + cn

X X X XX

Y

leftmost
boundary

rightmost
boundary

X X

Y

leftmost
boundary

rightmost
boundary

k

Fig. 4. Bounded wraparound dynamic programming simulates computation with an
unrestricted number of copies of X.

Definition: The width of the computation space is the maximum difference
R[i] − L[i] + 1, i = 0, . . . , m in the unrestricted-copies-of-X computation.

Lemma 2 The maximum width of the computation space is 2n.

Proof. Note that all the boundaries must lie within the “master” boundaries
so it suffices to show the maximum width for the masters. Since the master
alignments are duplicates separated by one copy of X , corresponding positions
in the alignments are n columns apart, i.e. they occur in columns c and c + n
(figure 5). Consider a row i in which the alignment moves horizontally in the
matrix (a deletion of characters in X). If L[i] is in column c, then R[i] is in
column c+n+h where h is the length of the horizontal move. As stated previously

n

h < n

n + h + 1

i

L[i] R[i]

Fig. 5. The maximum width of the computation space is 2n.

(section 2.3), h ≤ n − 1, so the maximum possible width of the computation is
2n.

Corollary 3 The bounding alignments can not collide in the BWDP array which
has 2n columns (excluding column zero which is not used after the boundaries
wrap around).

5 Application to tandem repeats from the C. elegans
genome

We implemented the tandem cyclic alignment algorithm and used it to analyze
the consensus patterns of tandem repeats found in the C. elegans genome. Our
goal was to identify pairs of patterns, one of which is a multiple approximate copy
of the other. The individual repeats were obtained with the Tandem Repeats
Finder (TRF) program [2] which identifies approximately 25,000 tandem repeats
in C. elegans. From these, we selected nearly 5300 repeats in four groups with
nominal pattern sizes of 70 base pairs (bp), 51bp, 35bp, and 17bp. (Repeats
within a group had pattern sizes within 3bp of the nominal size.) Each repeat
was paired with every repeat from all groups of smaller nominal pattern size
(except 70 bp which was not paired with 51 bp and 51 bp which was not paired
with 35 bp) and tandem cyclic alignment was run on all pairs.

DNA consists of two strands, one of which is the reverse complement of the other.
In a reverse complement, the direction of the sequence is reversed, the As and
Ts are swapped and the Cs and Gs are swapped. Since similar repeats may have
been found as reverse complements, for every pair, we first align the patterns as
they appear and then reverse complement one pattern and align them again.

The total number of alignments (including reverse complements) was 16.3 mil-
lion. On a 500 Mhz PC, the alignments took 17 and 3/4 hours or just over an
hour per million alignments.

Figure 6 illustrates an example of the relationships found in this search. It con-
sists of the alignment of the consensus patterns from 3 repeats, from widely
scattered genomic locations, that were found to be related. Pattern 1176 is 19
bp long. Four copies are shown (indicated by alternate shading). Pattern 197
is 34 bp long. Two copies are shown. Pattern 8989 is 68 bp long. One copy is
shown. For the latter two patterns, only the differences with the top pattern are
indicated. A dash (−) means that there is no character that corresponds to the
character in the top line. This is an insertion (into the top line) or a deletion
(from the second or third line).

Notice first that pattern 8989 is almost identical to two copies of pattern 197,
differing only in the substitution of A and C. TRF is able to find such closely
related patterns (of different sizes) for the same repeat and in fact reported that
repeat 8989 also had a pattern of size 34 that was identical to 197.

Next compare patterns 1176 and 197. Pattern 197 consists of two copies of 1176
with 6 differences. Because the two halves of 197 were quite different, TRF did
not report a pattern of size 19 (or any other similar size) for repeat 197. The
following scenario (highly speculative!) may have occurred. Two identical 19 bp
copies existed in an ancestral repeat and one of those copies was extensively mu-
tated, including the deletion of 4 nucloetides. The resulting pair of repeats, now
34 bp long was subsequently transposed to another location in the genome where
it duplicated, forming a tandem repeat. Some evidence for this scenario exists
in one of the copies of repeat 1176 which contains the adjacent two nucleotide
deletion seen in pattern 197.

Without the tandem cyclic alignment algorithm, the relationship between pat-
terns 197 and 1176 would be less clear. Our goal in comparing these patterns
is to obtain an accurate measure of the distance between them. If we used the
pattern local, text global tandem alignment algorithm (section 1.2), the results
would depend on the presentation of the text i.e. the cyclic permutation in which
it appears in the input. If pattern 197 (the text) were presented starting just
after a deletion (at the AAT following the two nucleotide deletion for example),
then the algorithm would fail to align any characters from pattern 1176 with the
positions of the two deleted characters (which do not actually occur in pattern
197). On the other hand, if pattern 197 were presented starting as it does in
figure 6 at GCAA, then all the deleted characters will appear in the alignment.
The alignment score will be different in these two cases.

Adjustment of alignment score obtained by the pattern local, text global tan-
dem alignment algorithm is possible, but not necessarily straightforward. As an
illustration, consider the pattern local, text global alignment (left below) and
the tandem cyclic alignment (right below) of text X and pattern Y :

X = gggtgg Y = gggt.

gggt gg gggt gg--
gggt gg gggt gggt

The former can be transformed into the later by merely adding the deleted
characters and the cost for the gap. But, a different situation occurs if the last
character of the text is changed to t:

X̂ = gggtgt.

gggt gt gggt g--t
gggt gg gggt gggt

Now the score changes not only by the cost of a gap, but also by the loss of a
mismatched pair and the gain of a matched pair. More complicated situations are
not difficult to construct. The tandem cyclic alignment algorithm however always
gives the correct score without manipulation regardless of the presentation of the
pattern or text.

Fig. 6. An example of aligned consensus patterns of different sizes.

6 Conclusion

We have defined a new alignment problem, tandem cyclic alignment and provided
an algorithm which solves this problem in O(nm log n) time for two sequences
of length n and m, n ≤ m when using any alignment scoring scheme with
additive gap costs. The algorithm was used to compare tandem repeats from
the C. elegans genome in order to identify pairs of repeats with an evolutionary
relationship where the consensus pattern of one is a multiple of the consensus
pattern of the other. We showed an example of one such relationship which would
not be reliably recognized with other alignment algorithms.

References

1. A. Apostolico, M.J. Atallah, L.L. Larmore, and S. Mcfaddin. Efficient parallel
algorithms for string editing and related problems. SIAM J. Comput., 19:968–988,
1990.

2. G. Benson. Tandem repeats finder: a program to analyze DNA sequences. Nucleic
Acids Research, 27:573–580, 1999.

3. V. Fischetti, G. Landau, J. Schmidt, and P. Sellers. Identifying periodic occur-
rences of a template with applications to a protein structure. In A. Apostolico,
M. Crochemore, Z. Galil, and U. Manber, editors, Proc. 3rd annual Symp. on Com-
binatorial Pattern Matching, Lecture Notes in Computer Science, volume 644, pages
111–120. Springer-Verlag, 1992.

4. H. Fuchs, Z. Kedem, and S. Uselton. Optimal surface reconstruction from planar
contours. CACM, 20:693–702, 1977.

5. G.M. Landau, E.W. Myers, and J.P. Schmidt. Incremental string comparison. SIAM
J. Comput., 27:7–82, 1998.

6. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Phys. Dokl., 10:707–710, 1966.

7. M. Maes. On a cyclic string-to-string correction problem. Information Processing
Letters, 35:73–78, 1990.

8. W. Miller and E. Myers. Approximate matching of regular expressions. Bulletin of
Mathematical Biology, 51:5–37, 1989.

9. J. Schmidt. All shortest paths in weighted grid graphs and its application to finding
all aproximate repeats in strings. SIAM J. Comput., 27:972–992, 1998.

