
Consensus RNA secondary structure prediction
by ranking k-length stems

Denise Y. F. Mak1, Gary Benson2

1Graduate Program in Bioinformatics, Boston University, Boston, MA 02215 USA
2Dept. of Computer Science and Dept. of Biology, Boston University, Boston, MA 02215 USA

Abstract— The accurate computational prediction of RNA
secondary structures is a difficult task, but an important
one, since RNA structure is usually more evolutionarily
conserved than primary sequence. We describe a dynamic
programming algorithm called FoldRRS (Folding of RNA
by Ranking of Stems) that predicts a consensus secondary
structure from a multiple sequence alignment. Our algorithm
exploits the use of k-length stems (k = 2) to acquire
base pairing probability and covariation information from
individual sequences. We test sequences from the BRAliBase
I data set [1] and the Rfam database [2]. Our results were
compared against three algorithms, RNAalifold, Pfold, and
KNetFold, that are similar in nature. FoldRRS exhibits an
increase in accuracy over the other programs in data sets
which contain longer and/or more numerous sequences.
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1. Introduction
The functional role of RNA has expanded rapidly to

include regulatory cellular functions such as regulating tran-
scription, gene silencing and genome maintenance. The 2007
ENCODE pilot project discovered, surprisingly, that the
entire human genome may yield higher than expected RNA
transcription as many novel non-protein coding transcripts
were identified [3]. Functional RNA families generally
have a common secondary structure as the function of
these molecules is inherently tied to secondary structure.
It is known that the secondary structure is often more
evolutionarily conserved than primary sequence. In fact, the
primary sequences of RNA families usually do not have very
high sequence identity which means that folding algorithms
that use only sequence information are likely to perform
poorly.

Some of the earliest single sequence RNA structure pre-
diction algorithms use dynamic programming to maximize
base pairs [4] or minimize structural energies [5]. Another
solution generates a partition function to calculate the prob-
abilities of every possible base pairing in the sequence [6].

The single sequence approach is generally not as accu-
rate as comparative approaches because information can be
gathered from multiple sequences that would otherwise be
missing from a single sequence. A comparative approach

gathers information from nucleotide base pairing interac-
tions which typically form canonical Watson-Crick base
pairs (AU, UA, GC, GC) or a wobble base pair (GU,
UG). The tremendous evolutionary pressures selecting for
structural elements strongly suggest that primary sequences
contain covariation information. These include consistent
and compensatory mutations which change the nucleotide
base pair while still preserving the existing structure. A
consistent mutation occurs when a single position changes
producing a valid base pair combination (GU → GC) and
a compensatory mutation occurs when both positions are
mutated but maintain a valid base pair (GU → UA). There
are a variety of ways to score covariation information,
Lindgreen et al. [7] showed that the best covariation measure
was RNAalifold’s covariation score [8] and concluded that
combining that with McCaskill’s base pairing probability
matrix score [6] could be a desirable approach.

One of the common comparative approaches starts with
an alignment and retrieves information from the alignment
to build a consensus secondary structure. It has been shown
that with sequence alignments, for sequences with medium
to high percent identity (> 60%) [9], the sequences are
diverse enough to provide covariation information and the
comparative approach performs well. Prevalent algorithms
following this method include RNAalifold [8], Pfold [10]
and KNetFold [11]. RNAalifold extends Nussinov’s dynamic
programming algorithm [4] to include thermodynamic rules
and a covariation measure. Pfold uses a stochastic context-
free grammar (SCFG) to produce a prior probability distri-
bution of RNA structures [10]. KNetFold uses a machine
learning algorithm to analyze k-nearest neighbor classifiers
to predict a base pair [11]. KNetFold also has the ability to
predict pseudoknot structures.

In this paper, we describe a method to predict a consensus
secondary structure from multiple sequences. Our method
requires a good multiple sequence alignment. We exploit
information about hairpin forming stems (also known as
stacking region) which contain at least k base pairs [5].
We combine two pieces of information from k-length stems
(k = 2) 1) probabilities of base pairings in these stems, and
2) information on consistent and compensatory mutations
(mutations in two positions that preserve Watson-Crick base
pairing) observed in the stems. The remainder of this paper
is organized as follows. In section 2 we describe the method.



Fig. 1: An (i, j, k) stem: the base pairs (i, j), (i− 1, j + 1), · · · , (i− k + 1, j + k − 1) forming a k-length stem.

The data used to test the algorithm are detailed in section 3
and we highlight the results in section 4. Finally, we discuss
the results in section 5.

2. Method
2.1 FoldRRS Algorithm

The following steps outline the algorithm:
1) Calculate multiple sequence alignment
2) Generate base pairing probability matrices for each

individual sequence
3) Adjust the matrices with gaps according to the multiple

alignment
4) Scan each matrix for k-length stems with each entry

having probability ≥ 0.001
5) Identify and score common stems
6) Sort the common stems by two-part process
7) Remove common stems with zero covariation score

that have a stem score below a minimum threshold m
8) Combine common stems into larger stems
9) Use DP algorithm to fill structure matrix, S and energy

matrix, E
10) Entry in E with the lowest minimal free energy

represents the consensus secondary structure, stored
in S

The first step to the algorithm yields a multiple sequence
alignment. We use ClustalW [12] which was chosen for
its ease of use and popularity, although any other multiple
sequence alignment program could be used. A base pairing
probability matrix for each sequence is generated using
McCaskill’s algorithm [6] implemented in the Vienna RNA
package [13]. Gaps are added to each matrix corresponding
to gaps in the multiple sequence alignment. Steps 1-3 are
similar to [14]. The differences begin with the remaining
steps and are described below.

We scan each base pairing probability matrix for k-length
stems in which each individual entry has probability ≥ 0.001
as it is unlikely for structural base pairs to have lower
probabilities [14]. A k-length stem is defined as k base pairs
at positions (i, j), (i−1, j+1), · · · , (i−k+1, j+k−1) as
illustrated in figure 1. We use the label (i, j, k) to describe a
k-length stem with the closing base pair occurring between

positions i and j. In what follows, we use k = 2. This value
represents the minimum stem length.

We define a stem to be common if it was found in at least
2 of the sequences. Each common stem has a stem score,
Ti,j,k, which is the sum of its probability and covariation
scores:

Ti,j,k = Pi,j,k + Ci,j,k

Let x be the number of sequences, bAi,j be the base pair
probability for positions i and j in sequence A, and V A

i,j be
a valid stem indicator which equals 1 if all the base pairs in a
k-length stem, closing at i and j, have probability ≥ 0.001,
and equals 0 otherwise. The probability score, Pi,j,k, is the
average of the base pairing probabilities in the k-length stem
summed over all the sequences where it was found. Pi,j,k

is zero if the stem is never found.

Pi,j,k =
x∑

A=1

(∑k−1
s=0 b

A
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)
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The covariation score is calculated using RNAalifold’s [8]
covariation scoring method which gives weights for con-
sistent and compensatory mutations. Let BP be the set of
allowed base pairs: BP = {AU, UA, CG, GC, GU, UG}.
The allowed base pairs are described in matrix Π:

ΠA
i,j =

{
0 if base pair (A[i], A[j]) /∈ BP
1 if base pair (A[i], A[j]) ∈ BP

Invalid base pairs are described in matrix I which is used
to measure a penalty score:

IA
i,j =

{
1 if base pair (A[i], A[j]) /∈ BP
0 if base pair (A[i], A[j]) ∈ BP

Let δ(A[i], A[j], B[i], B[j]) be the Hamming distance be-
tween two base pairs in sequence A and B at positions i
and j:

δ =

8>>><>>>:
0 if the two base pairs are identical
0.5 if the base pairs differ in exactly

one position (consistent mutation)
1 if the base pairs differ in both

positions (compensatory mutation)



BRAliBase I data
Sequences Mean Length Mean Similarity Num. Sequences

High Med High Med
S. cerevisiae tRNA-PHE 73 84.4 60.0 11 11

E. coli RNase P 377 81.5 67.1 9 11
E. coli SSU rRNA 1542 90.7 80.0 11 11

Table 1: BRAliBase I data characteristics. The data set is labeled after the reference sequence.

Rfam data
Sequences Mean Length Mean Similarity Num. Sequences

U8 snRNA (RF00096) 111 63.7 6
Lysine riboswitch (RF00168) 179 60.6 47
HCV IRES region (RF00061) 243 73.9 79

Table 2: Rfam data characteristics. The data set is labeled after the Rfam family.

The covariation score is the addition of the number of
mutations between all sequence pairs minus the number of
invalid base pairs at positions i and j.
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The common stems are ranked in a two-step process. They
are first separated into two groups, one having non-zero
covariation scores and the other having covariation scores
of zero. Each group is sorted from highest to lowest stem
score. A minimum stem score, m, for common stems with
a zero covariation score is set to

m = 0.25× total number of sequences.

The value of 0.25 was chosen empirically as it allows high
stem scores with no covariation information to be included.
The two groups are joined into a ranked list of common
stems with the stems having non-zero covariation scores
added first.

We combine common stems that have overlapping base
pairs and stem scores that are adjacently ranked since no
other common stem is ranked between the two. The joining
of common stems into a larger stem can potentially provide
stronger evidence for base pairing because the probability
and covariation scores are recalculated for the longer stem.
Longer stems are energetically favored.

The list of n common stems contains the base pairs that
are most likely to be paired. We use a dynamic programming
method to build the consensus secondary structure from this
information.

2.2 Dynamic Programming
The dynamic programming algorithm step builds the

consensus secondary structure by minimizing the minimum

free energy (MFE) of the structure. The structure matrix,
S, and the corresponding energy matrix, E, have n rows
and n columns for the n common stems. The ranking of
the common stems is important as it determines the order
in which they are added to form the consensus secondary
structure. Each common stem is added to the previously de-
fined structure and the energy of the newly formed structure
is re-calculated.

The following rules apply when deciding which base pairs
to add to a structure.

1) Pseudoknots are discarded. Two base pairs (i, j) and
(k, l) cannot have i < k < j < l.

2) A nucleotide can only be base paired with one other
nucleotide.

3) The loop distance between bases must be at least 3
nucleotides long.

4) A higher ranked stem wins when there is a conflict as
described by the first three rules.

The entry Sij represents the jth ranked common stem
being added in ith order where i ≤ j. A common stem
cannot be added higher than its ranking. For example, the
second ranked common stem can only be added first (the first
ranked stem was discarded) or second (after the addition of
the first ranked common stem).

The initial values of matrix S are the secondary structures
of adding a single common stem j and stored in S1j .
The structure energies are stored respectively in the energy
matrix, E1j . The DP step of the algorithm is

Eij = minimum energyj−1
d=i−1

{
S(i−1)d + stemj

}
where stemj is common stem j and the minimum energy

Eij is an average energy over all sequences for structure Sij .
The entries in matrix S follow the same path as matrix E.
The lowest entry in Eij represents the consensus secondary
structure stored in Sij .



Data Alignment Num. of common stems
Length before combining after combining

S. cerevisiae tRNA-PHE (H) 73 41 31
S. cerevisiae tRNA-PHE (M) 75 18 13

E. coli RNaseP (H) 385 168 127
E. coli RNaseP (M) 458 145 125

E. coli SSU rRNA (H) 1554 562 495
E. coli SSU rRNA (M) 1604 595 547
U8 snRNA (RF00096) 146 56 45

Lysine riboswitch (RF00168) 274 50 48
IRES region of HCV (RF00061) 413 43 36

Table 3: Number of common stems before and after combining adjacently ranked overlapping stems.

3. Data
3.1 BRAliBase I sequences

We use three of the four BRAliBase I data sets [1] to
measure the accuracy of our program (table 1). We did
not test E. coli LSU rRNA sequences as RNAalifold and
Pfold’s webserver limits were reached. These sequences
have been established as a benchmark for RNA secondary
structure prediction algorithms. The data comprise a diverse
group of sequences and each contains two multiple sequence
alignments generated by ClustalW [12] representing high
and medium sequence identity. The high similarity group
has a mean pairwise sequence identity of 80 − 90% and
the medium similarity group has a mean pairwise sequence
identity of 60− 80%. The first sequence in the alignment is
labeled the reference sequence, B1, and an experimentally
validated structure, S1, is also provided. The other sequences
in the alignment, B2 · · ·Bn, belong to the same family and
exhibit structural similarities which our program aims to
identify.

RNA folding programs take sequences and predict a
consensus structure from them. But, in order to measure the
accuracy of the prediciton, a reference consensus structure is
needed. However, when a consensus structure is unavailable,
a method called consensus reconstruction is used [1] to
create one from the structure of the reference sequence.

3.2 Rfam sequences
We also test sequences taken from the Rfam database

release 9.0 [2] (table 2). We use the Rfam seed alignments
instead of the full alignments because seed alignments were
hand-curated and contain known representative members
of the families. The full alignments contain many more
sequences added through computational measures.

3.3 HCV IRES Region
We further investigate the IRES region from the Hepati-

tis C virus taken from the Los Alamos hepatitis C sequence
database [15]. We retrieved 194 full IRES region sequences
(1-342 bases because the last pseudoknot within the IRES
region between the coding start site is ignored) and after

removing ambiguous sequences, 173 remain. The sequences
have an alignment length of 356, mean length of 342 and
mean pairwise sequence identity of 94.8%. An experimen-
tally confirmed secondary structure [16] is used to evaluate
our program.

4. Results
4.1 Time Complexity

The time complexity of FoldRRS beginning at step 4 of
the algorithm is O(xl2) for the scanning of k-length stems
for each of x sequences of alignment length l and assuming
that k is held constant. The dynamic programming step takes
time O(xtn2) where n is the number of common stems,
and t is the time required to calculate the average energy
of a structure. From table 3, n is approximately equal to
l/2 for small l (< 100) and for larger l, n is approximately
equal to l/3. The time complexity of ClustalW is O(x4 + l2)
and O(xl3) for generating individual base pairing matrices.
Overall, the time complexity of FoldRRS is O(xtl2 + x4 +
xl3).

4.2 Prediction Measure
In order to measure the accuracy of our prediction, we

need to be able to compare the number of true positives
(TP ), true negatives (TN ), false positives (FP ) and false
negatives (FN ). We use the sensitivity (X), selectivity (Y )
and Matthews Correlation Coefficient (MCC) measurement
values as defined in [1] to compare our results. The sensi-
tivity and selectivity values are defined as:

sensitivity =
TP

TP + FN
selectivity =

TP

TP + (FP − ξ)
The false positive term is divided into three categories,

inconsistent, contradiction or compatible. Inconsistent base
pairs conflict with a base pair in the reference structure.
Contradicting base pairs cause non-nested (pseudoknot) sit-
uations with respect to the reference struture. Compatible
base pairs are those that are not present in the reference
structure but produce no conflict and the ξ term allows these
base pairs to be removed from the false positive count.



E. coli RNaseP l = 377 n = 11(M) or 9(H)
Algorithm BPs in Ref. BPs in Subj. TPs (sens.) FPs (select.) MCC

RNAalifold (H) 79 112 61 (77.2) 16 (79.2) 0.781
RNAalifold (M) 102 93 69 (67.6) 22 (75.8) 0.715

Pfold (H) 79 64 50 (63.3) 8 (86.2) 0.738
Pfold (M) 102 104 92 (90.2) 5 (94.8) 0.925

KNetFold (H) 79 91 55 (69.6) 25 (68.8) 0.691
KNetFold (M) 102 104 77 (75.5) 23 (77.0) 0.761
FoldRRS (H) 79 93 56 (70.9) 9 (86.2) 0.781
FoldRRS (M) 102 92 88 (86.3) 0 (100.0) 0.929

Table 4: Results for E. coli RNase P. l is mean sequence length, n is number of sequences. H and M indicate, respectively,
high and medium similarity sets

E. coli SSU rRNA l = 1542 n = 11
Algorithm BPs in Ref. BPs in Subj. TPs (sens.) FPs (select.) MCC

RNAalifold (H) 453 483 290 (64.0) 177 (62.1) 0.630
RNAalifold (M) 444 452 387 (87.2) 36 (91.5) 0.893
KNetFold (H) 453 492 292 (64.5) 174 (62.7) 0.635
KNetFold (M) 444 464 328 (73.9) 103 (76.1) 0.750
FoldRRS (H) 453 369 286 (63.1) 64 (81.7) 0.718
FoldRRS (M) 444 373 325 (73.2) 29 (91.8) 0.820

Table 5: Results for E. coli SSU rRNA. Pfold could not be tested as the maximum sequence length is 500 on the webserver.

U8 snRNA (RF00096) l = 111 n = 6
Algorithm BPs in Ref. BPs in Subj. TPs (sens.) FPs (select.) MCC

RNAalifold 38 23 12 (31.6) 7 (63.2) 0.442
Pfold 38 20 16 (42.1) 4 (80.0) 0.577

KNetFold 38 46 25 (65.8) 14 (64.1) 0.645
FoldRRS 38 42 27 (71.1) 11 (71.1) 0.707

Table 6: Results for U8 snRNA.

Lysine riboswitch (RF00168) l = 179 n = 47
Algorithm BPs in Ref. BPs in Subj. TPs (sens.) FPs (select.) MCC

RNAalifold 53 38 38 (71.7) 0 (100.0) 0.846
KNetFold 53 53 52 (98.1) 0 (100.0) 0.990
FoldRRS 53 44 44 (83.0) 0 (100.0) 0.910

Table 7: Results for Lysine riboswitch. Pfold could not be tested as the maximum number of sequences allowed is 40 on
the webserver.

The Matthews Correlation Coefficient combines both sen-
sitivity and selectivity and is defined as:

MCC =
TP × TN − (FP − ξ)× FNp

(TP + FP − ξ)(TP + FN)(TN + FP − ξ)(TN + FN)

The BRAliBase webpage contains perl scripts to compute
these values.

4.3 Limitations
Of the three programs to which we compare our results,

the publicly available Pfold webserver has a limit of 40
sequences and an alignment length limit of 500. Because
of this, we could not test Pfold with E. coli SSU rRNA and
with the IRES region of HCV.

We did not change RNAalifold, Pfold or KNetFold’s
default program parameter settings although this could have
potentially improved performance.

5. Discussion
Results are shown in tables 4–9. These tables give the

number of true and false positives found by each programs
as well as the Matthews Correlation Coefficient which com-
bines these into a common measure. Because in many cases,
one program does better on true positives and worse on false
positives, we focus on the MCC measure.

For the short S. Cerevisiae tRNA sequences, all programs
find the complete structures and so these results will not be
discussed further.



IRES region of HCV (RF00061) l = 243 n = 79
Algorithm BPs in Ref. BPs in Subj. TPs (sens.) FPs (select.) MCC

RNAalifold 77 28 26 (33.8) 0 (100.0) 0.580
KNetFold 77 55 39 (50.6) 14 (73.6) 0.609
FoldRRS 77 35 33 (42.9) 0 (100.0) 0.653

Table 8: Results for HCV’s IRES region. Pfold could not be tested as the maximum number of sequences allowed is 40 on
the webserver.

IRES region of HCV from Los Alamos HCV sequence database l = 342 n = 173
Algorithm BPs in Ref. BPs in Subj. TPs (sens.) FPs (select.) MCC

RNAalifold 99 95 51 (51.5) 40 (56.0) 0.535
KNetFold 99 102 48 (48.5) 49 (49.5) 0.488
FoldRRS 99 86 51 (51.5) 30 (63.0) 0.568

Table 9: Results for the HCV IRES region taken from the Los Alamos HCV sequence database. Pfold could not be tested
as the maximum number of sequences allowed is 40 on the webserver.

For the remaining 8 sets of sequences, FoldRRS has
the best MCC score in 6 sets. These include the E. coli
RNaseP medium and high similarity sets (Table 4), the E.
coli SSU rRNA high similarity set (Table 5), the U8 snRNA
set (Table 6), the Lysine riboswitch set (Table 7), the HCV
IRES set from Rfam (Table 8), and the HCV IRES set from
Los Alamos (Table 9).

In particular, in the SSU rRNA high similarity set (Ta-
ble 5), one of the sets with the longest sequence, FoldRRS
yields nearly the same number of true positive base pairs as
the other programs but picks only 64 false positives which
is one-third the number picked by the other programs. This
tendency for FoldRRS to be more conservative in picking
false positives is also apparent in the other long sequence
sets (Tables 4, 5 – medium similarity, 8, 9). Two of these
sets also contain the highest number of sequences and would
be most likely to harbor the most covariation information.
These set characteristics suggest that our filter for common
stems and our stem rankings are effective with longer and/or
more numerous sequences.

For the remaining 2 sets of sequences, FoldRRS has the
second best MCC score, being outperformed by RNAalifold
on the E. coli SSU rRNA medium similarity set (Table 5),
and by KNetFold on the Lysine riboswitch set (Table 7).

The number of common stems found by FoldRRS with
k = 2 are highlighted in table 3. There was a slight decrease
in the number of common stems after combining them,
which indicates common stems having stem lengths ≥ 3.
This would seem to indicate that an initial scan of varying
stem lengths might improve the prediction as our algorithm
only combines adjacently ranked common stems with stem
length of 2.

6. Conclusion
We have developed a competitive new secondary structure

prediction algorithm that selects likely k-length stems which

are vital components of RNA structure. We identify these
stems by combining covariation information provided by a
sequence alignment with base pairing probabilities. We show
in a collection of 8 data sets which vary in length and number
of sequences and degree of pairwise sequence similarity, that
FoldRRS outperforms other similar RNA structure prediction
programs (in 6 sets) or comes in second (in 2 sets) and that
the program does consistently well in data sets which contain
longer and/or more numerous sequences.
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