
File: 571J 138901 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 6786 Signs: 4263 . Length: 60 pic 11 pts, 257 mm

Journal of Computer and System Sciences � SS1389

journal of computer and system sciences 52, 299�307 (1996)

Let Sleeping Files Lie: Pattern Matching in Z-Compressed Files

Amihood Amir*

College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0280

Gary Benson
-

Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113

and

Martin Farach
�

DIMACS H Rutgers, Box 1179, Rutgers University, Piscataway, New Jersey 08855

Received July 13, 1993

The current explosion of stored information necessitates a new model
of pattern matching, that of compressed matching. In this model one
tries to find all occurrences of a pattern in a compressed text in time
proportional to the compressed text size, i.e., without decompressing
the text. The most effective general purpose compression algorithms are
adaptive, in that the text represented by each compression symbol is
determined dynamically by the data. As a result, the encoding of a sub-
string depends on its location. Thus the same substring may ``look
different'' every time it appears in the compressed text. In this paper we
consider pattern matching without decompression in the UNIX Z-com-
pression. This is a variant of the Lempel�Ziv adaptive compression
scheme. If n is the length of the compressed text and m is the length
of the pattern, our algorithms find the first pattern occurrence in time
O(n+m2) or O(n log m+m). We also introduce a new criterion to
measure compressed matching algorithms, that of extra space. We
show how to modify our algorithms to achieve a trade-off between the
amount of extra space used and the algorithm's time complexity.
] 1996 Academic Press, Inc.

1. INTRODUCTION

Recent years have seen an explosion in the gathering and
storage of data. Some institutions now have data archives
that are too vast to be processed. Because of the prodigous
amounts of data, virtually all of it is maintained in some
compressed form. This proliferation of stored information
introduces a new demand on data compression schemes. It is
no longer sufficient that the compression achieve a good
ratio and that the compression algorithm be fast. We now
need algorithms for pattern matching in time and space
proportional to the compressed size, i.e., without the need to
decompress.

The compressed matching problem was formally defined
by Amir and Benson [2, 1] as follows: Let _=s1 } } } su be a
text string of length u over alphabet 7=[a1 , ..., aq]. Let
_.c=t1 } } } tn be a compression of _ of length n�u.

INPUT. Compressed text _.c=t1 } } } tn , and pattern
P=p1 } } } pm .

OUTPUT. The first text location i such that there is a
pattern occurrence at si , i.e., si+j&1=pj , j=1, ..., m.

Amir and Benson [2, 1] also defined a compressed
matching to be efficient if its time complexity is o(u), almost
optimal if its time complexity is O(n log m+m) and optimal
if it runs in time O(n+m).

The first compressed matching algorithms were side
effects of papers by Eilam-Tsoreff and Vishkin [6] and Amir,
Landau, and Vishkin [4]. The techniques of Eilam�Tsoreff
and Vishkin give a trivial optimal algorithm for compressed
string matching under the run-length compression. Amir,
Landau, and Vishkin showed an efficient algorithm for
two-dimensional compressed matching. That algorithm's
running time was o(u) but 0(u�m). Since the two-dimen-
sional run length compression size may be as small as
n=- u, their algorithm is clearly far from optimal. Amir
and Benson [2, 1] developed an almost optimal O(n log m)
algorithm for two-dimensional run-length compression,
and Amir, Benson, and Farach [3] devised an optimal O(n)
algorithm for this problem.

The main difficulty in the latter algorithms is due to the
fact that the text is two dimensional. In comparison, the
algorithm for compressed string matching is straightforward.
In fact, any nonadaptive one-dimensional compression, such
as run-length or Huffman encoding, has an easy compressed
matching algorithm. Simply compress the pattern and run

article no. 0023

299 0022-0000�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* Partially supported by NSF Grants CCR-92-23699 and IRI-90-13055.
- Partially supported by NSF Grants DMS-90-05833 and DMS-87-

20208.
� Supported by DIMACS under NSF Contract STC-88-09648.

File: 571J 138902 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 7941 Signs: 4869 . Length: 56 pic 0 pts, 236 mm

your favorite string matching algorithm on the compressed
text and pattern. There may be a need for some extra work.
For example, the first and last pattern elements have to be
handled separately in the run-length compression case, and
the starting bit of each encoded symbol needs to be found in
the Huffman encoding.

The challenge seems to be adaptive compressions such as
Lempel�Ziv [12]. In an adaptive compression, the text
represented by each compression symbol is determined
dynamically by the data. As a result, the same substring will
be encoded differently depending on its location in the text.
Thus encoding the pattern is futile since it will not appear in
the compressed text in its compressed form.

In this paper we consider one-dimensional compressed
matching in the UNIX Z-compression (also known as the
LZW compression). This is a variation of the Lempel�Ziv
compression introduced by Welch [11]. It is also an
adaptive compression but encoding and decoding is much
simpler than in the Lempel�Ziv compression.

The main contributions of our paper are:

v We show the first known almost optimal compressed
matching algorithm for an adaptive compression. The algo-
rithm is based on some new insights into the nature of the
LZW compression. Our algorithm is simple, fast, and easy
to code. Our constants are smaller than those in the naive
``decompress-then-search'' option.

v We introduce a new criterion for evaluating com-
pressed matching algorithms, that of extra space. In some
applications there is a limited amount of extra available
space. Therefore, an optimal algorithm that uses O(n)
space, in addition to the compressed file itself, may not be
feasible. We need algorithms that use o(n) extra space,
optimally O(m), in addition to the n-length compressed file.

v We show how to modify our basic algorithm to
achieve trade-offs between time and the amount of extra
space used. Our results are summarized in Table 1.

TABLE 1

Summary of Results

Algorithm Section Time Extra space

Currently knowna O(u) O(n+m)
Optimal for m�- n 4.2 O(n+m2) O(n+m2)
Almost optimal 4.3 O(n log m+m) O(n+m)
Hashing implementation, 5.2 O(nc2+m2) w.h.p. O((n�c)+m2)
c<m, - u
Hashing implementation 6 O(n log2 n+m2) expected O(m2)
for text files
Worst case trade-off 5.2 O(n:;+n; log m+m2) O((n�c)+m2)

:=min(c, m), ;=min(c, - u)

a This is essentially the algorithm that decompresses and searches in the
decompressed string. The reason the additional space is O(n+m) rather
than O(u+m) is that it is not necessary to keep the entire decompressed
text. It is sufficient to store a sliding window of m symbols. Such an
algorithm is implemented in unix by the command zcat 8file | grep
8pattern.

The paper is constructed as follows. Section 2 defines the
LZW compression and proves some interesting properties of
that compression. Section 3 is the outline of our basic algo-
rithm. In Section 4 we discuss some implementations that
yield almost optimal algorithms. Section 5 introduces the
extra space criterion and analyses some time�extra space
trade-offs. We discuss some ``real-life'' issues in Section 6 and
conclude with a plethora of open problems in Section 7.

2. PRELIMINARIES

Definition. Let _=s1 } } } su be a string over alphabet
7=[a1 , ..., aq]. The Z-compression _.Z of _ is the string
_.Z[1] } } } _ . [n], where 1 � _.Z[i] � n + q & 1, for
i=1, ..., n. The Z-compression is constructed with the aid of
a dictionary trie T_ . The dictionary is an (n+q+1)-node tree
whose nodes are labeled by symbols of 7, and numbered 0
through n+q. The string of a node p in T_ is the concatena-
tion of the node labels on the path from the root
to p. The dictionary and compression string are constructed
as follows:

1. T_ is initialized as a (q+1)-node rooted tree where the
root is labeled 4 and numbered 0. The root has q children
numbered 1, ..., q. Child i is labeled ai . The initial dictionary
and the empty compression string reflect the null string 4.

2. Assume that the dictionary and compression string
reflect s1 } } } si . Let l be the last defined element in the com-
pression string _.Z, and let l $ be the last numbered node
in T_ . Let si+1 } } } sj be the longest prefix of si+1 } } } su for
which there is a node numbered p in T_ whose string is
si+1 , ..., sj . Let _.Z[l+1] get value p. If j{u then attach a
new node numbered l $+1 and labeled sj+1 as a child of
node p in T_ . The dictionary and compression string now
reflect s1 } } } sj .

Each element of the compression string represents a
chunk. The chunk represented by _.Z[i] (_.Z[i]'s chunk)
is the string of the node that _.Z[i] points to.

Example. 7=[a, b, c], _=aabbaabbabcccccc.

_ } Z=1, 1, 2, 2, 4, 6, 5, 3, 11, 12.

T_= 0, 4

1, a 2, b 3, c

4, a 5, b 7, a 6, b 11, c

8, b 10, c 9, a 12, c

Note that the uncompressed string _ has length u while its compressed ver-
sion _.Z has length n.

Theorem 2.1 (Welch [11]). Given string _, one can
construct T_ and _.Z in time O(u). Given string _.Z, one can
construct T_ and _ in time O(u).

300 AMIR, BENSON, AND FARACH

File: 571J 138903 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 6168 Signs: 4555 . Length: 56 pic 0 pts, 236 mm

The following theorem and its corollary are crucial to our
algorithm. The theorem presents a mapping between the
node numbers in the dictionary trie and the chunk locations
in the compressed string.

Theorem 2.2. The value assignment to location l in _.Z,
1�l�n&1, causes the definition and creation of node
number l+q in the dictionary trie.

Proof. By induction on l. For l=1 we have _.Z[1]=i,
where s1=ai . The node added has string s1s2 . This does not
appear in the tree and thus causes a new node to be created
as a child of node number i. The label of the new node is s2

and its number is q+1. Assume now that node l+q was
created when _.Z[l] was assigned its value. Assume also
that the trie and compression string reflect s1 } } } si . Let p be
the number of the node whose string is si+1 } } } sj , where
si+1 } } } sj is the longest prefix of si+1 } } } su that appears as
a tree node's string. Therefore there is no dictionary node
whose string is si+1 } } } sj+1. Thus a new node labeled sj+1

will be created as p's child, and its number is l+q+1. K

Corollary 2.3. Let _.Z[i]=l. The first symbol of
_.Z[i]'s chunk is the first symbol of _.Z[l&q]'s chunk. The
last of symbol of _.Z[i]'s chunk is the first symbol of
_.Z[l&q+1]'s chunk.

Definition 2.4. Let P=p1 } } } pm be a pattern string.
An internal substring pi } } } pj of the pattern is a substring
where i>1 and j�m. A chunk which is an internal sub-
string is called an internal chunk. A chunk is a prefix chunk
if it ends with a nonempty pattern prefix. The representing
prefix of a prefix chunk is the longest pattern prefix with
which it ends. A chunk is a suffix chunk if it begins with a
nonempty pattern suffix. Its representing suffix is the longest
pattern suffix with which it begins.

Lemma 2.5. Let _.Z be a compressed string of length n,
P a pattern of length m. There are at most m2 internal chunks
of which at most m chunks are exact suffixes of P. There may
be as many as n prefix chunks.

Proof. Recall that a chunk is a path from the root to a
dictionary trie node. Since there are at most m2 internal sub-
strings and they must all start at the root, then there may be
no more than m2 internal chunks and of these, at most m are
suffixes. Note, however, that all descendants of these m
suffixes are what we defined as suffix chunks.

All chunks may be prefix chunks as illustrated by the
following example. Let _=aaa } } } a, where a is the first
character of the pattern. K

3. BASIC ALGORITHM USING EXPLICIT DICTIONARY

As in most pattern matching problems, the algorithm
consists of a pattern preprocessing part and a text scanning
part (in our case the text is the compressed string _.Z). We

adopt the notation S1S2 to denote the concatenation of
strings S1 and S2 . For clarity we will also denote the sub-
string starting at pattern location i and ending at pattern
location j as pi } } } pj . In reality such substrings are
implemented as the pair (i, j).

A. Pattern Preprocessing.

1. Preprocess the pattern to allow answering the follow-
ing queries:

(a) Let S1 be a pattern prefix, S2 an internal sub-
string.

Q1(S1 , S2)=the length of the longest pattern prefix

that is a suffix of S1S2 .

(b) Let S1 be a pattern prefix, S2 a pattern suffix.

i, i is the smallest index of S1S2 ,
Q2(S1 , S2)={ where there is a pattern occurrence;

0, there is no pattern occurrence in S1S2 .

(c) Let S1 be an internal substring, a # 7.

(i, j) , S1a is internal substring pi } } } pj

Q3(S1 , a)={ j=m if possible;
(0, 0) , S1a is not an internal substring.

Time and Space. In Section 4 we will discuss different
implementations that allow answering these queries. For the
moment let tP(m) be the pattern preprocessing time and
sP(m) be the pattern preprocessing space. Let tQi (m) be the
time to answer query i, respectively.

Text Scanning. The text scanning part has two main
components. The dictionary construction and update part,
and the pattern search part.

When constucting the dictionary we also introduce and
appropriately mark a prefix flag, a suffix flag, and an inter-
nal flag. In addition, every node stores the first symbol in
its string. The prefix flag indicates the length of the repre-
senting prefix, the suffix flag indicates the length of the
representing suffix, and the internal flag indicates the indices
of the internal substring that this node represents.

The pattern search part keeps track of the largest pattern
prefix that ends with the previous chunk, and then uses the
queries to find out if the current chunk extends the prefix or
not.

B. Compressed Text Scanning.

Initialize: Prefix � 4.
for l=1 to n do [The sequence below is done for each
element of _.Z].

301PATTERN MATCHING IN Z-COMPRESSED FILES

File: 571J 138904 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 5704 Signs: 3759 . Length: 56 pic 0 pts, 236 mm

1. Dictionary Construction and Flagging:

(a) Add node number l+q to T_ . This node is
the child of node number _.Z[l]. Its
label is the first symbol of node
_.Z[l+1]. (If _ . [l+1]=l+q then the
label is _.Z[l .Z]'s first symbol.)

(b) The first symbol of node number l+q is
the first symbol of its parent.

(c) If _.Z[l] is a suffix node then l+q is a
suffix node. Its representing suffix
is the same as that of its parent.

(d) If _.Z[l] is internal node pi } } } pk and
the label of l+q is a then mark l+q's
internal flag with Q3(pi } } } pk , a)=(h, j).
If additionally, node l+q is a suffix
node (i.e. j=m) then mark its suffix
flag with its representing suffix.
(This may reset the value marked in
(c).)

(e) If _.Z[l] is a prefix node with
representing prefix p1 } } } pi and the
label of l+q is a then mark l+q's
prefix flag with Q1(p1 } } } pi , a).

2. Pattern Search:

(a) If Prefix=4 and _.Z[l] is a prefix node
with representing prefix p1 } } } pi then
Prefix � p1 } } } pi .

(b) If Prefix{4 and _.Z[l] is a suffix node
whose representing suffix is pi } } } pm

then if Q2 (Prefix, pi } } } pm){0 we have a
pattern appearance.

(c) If Prefix {4 and _.Z[l] is internal node
pi } } } pj then Prefix � Q1(Prefix, pi } } } pj), else
_.Z[l] is not an internal node and
Prefix � representing prefix of _.Z[l].

Time. O(n(tQ1
(m)+tQ2

(m)+tQ3
(m))).

Space O(n).

Total Algorithm Time. O(n(tQ1
(m)+tQ2

(m)+tQ3
(m))+

tP(m)).
Total Algorithm Space. O(n+sP(m)).

4. IMPLEMENTATION AND ANALYSIS

4.1. O(n+m3) Time and Space Algorithm

We begin with a simple implementation for queries Q1 ,
Q2 , and Q3 . This implementation is inefficient but serves as

a stepping stone for the better schemes presented in the
following sections.

The main idea is to create two m_m2 tables, N1 and N2 ,
where the rows correspond to the m pattern prefixes and the
columns correspond to the m2 internal substrings of the
pattern. Denote the j th pattern substring by P(j).

v N1[i, j] is the maximum l, 0�l�i for which the
length-l suffix of p1 } } } pi concatenated with P(j) is a prefix of
the pattern. If there is no suffix of p1 } } } pi that, concatenated
with P(j), is a prefix of P, then l=0.

v N2[i, j] is the length of the maximum suffix of p1 } } } pi

that is the prefix of an occurrence of P in p1 } } } piP(j).

Example. P=abcab, P(j)=bca. Then:

v N1[4, j]=1 because the longest suffix of abca | bca
which is a prefix of P has length four and uses only the last
letter from p1 } } } p4 .

v N2[4, j]=4 because the first occurrence of P in
abca | bca uses all four letters of p1 } } } p4 .

Once tables N1 and N2 are constructed, we can answer
queries Q1 and Q2 in constant time in the following fashion.
If Q1(p1 } } } pi , P(j))>|P(j)|, then Q1(p1 } } } pi , P(j))=
N1[i, j]+|P(j)|. Otherwise, (N1[i, j]=0), check if P(j) is a
prefix chunk. As for Q2 , clearly Q2[i, j]=i&N2[i, j]+1.
We now show how to construct tables N1 and N2 in time
and space O(m3). We will later show a separate method for
answering Q3 queries. We need two data structures as tools
for our implementation.

The Knuth�Morris�Pratt (KMP) Automaton. For every
prefix p1 } } } pi , the KMP automaton provides, in constant
time, the border of p1 } } } pi , that is, the largest suffix of
p1 } } } pi that is also a prefix.

The (Uncompacted) Suffix Trie. A suffix trie STS of
string S is a trie of all the suffixes of S.

Observations. 1. Every substring of S is a node in STS .

2. The leaves that are descendents of node P(j) are
exactly the suffixes whose prefix is P(j), i.e., the starting loca-
tion of these suffix are exactly the locations in P, where P(j)

occurs.

Both our tables are similarly constructed. An overview of
the table constructing algorithm follows.

Tables N3 and N2 Construction Algorithm.

1. Construct the KMP automaton for P.

2. Construct the uncompacted suffix trie
for P.

3. Using the suffix trie, fill in all table
locations where:

302 AMIR, BENSON, AND FARACH

File: 571J 138905 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 6449 Signs: 5011 . Length: 56 pic 0 pts, 236 mm

v N1[i, j]=i (i.e., where all of p1 } } } pi P(j) is a
prefix of P)

v N2[i, j]=i (i.e., where the first occurrence
of P in p1 . . .piP(j) begins with p1).

4. For each table column, fill in the rest of
the entries using the KMP automaton.

Implementation and Analysis. Step 1 is a standard KMP
automaton construction that was shown in [8] to be
accomplished in time and space O(m). Step 2 can be easily
implemented in time and space O(m2). We need to consider
Steps 3 and 4.

Step 3. For N1 , by observation 2, in the suffix trie, each
leaf descendent from node P(j) corresponds to a suffix of P
that begins with P(j). Let there be l such leaves and let the
starting locations of these l suffixes be i1 , ..., il . Consider the
first suffix with starting location i1 . Clearly, p1 } } } pi1&1P(j)

is a prefix of P and N1[i1&1, j]=i1&1. Thus, the locations
i1&1, ..., il&1 are precisely the places, where N1[i, j]=i.

For N2 , recall that the compressed text scanning portion
of the algorithm only queries Q2 on a prefix�suffix pair.
Thus it is sufficient to construct the N2 table only for the
m substrings of P that are suffixes. If P(j) is a suffix (leaf
in the suffix trie) that has starting position i then
N2[i&1, j]=i&1. But, in N2 , we have additional nodes,
where N2[i, j]=i. Denote the length-d prefix of P(j) by
P(j | d). Then N2[i, j]=i at all the nodes where
N1[i, j | (m&i+1)]=i and this latter specification encom-
passes the first.

It is easy to see that one may construct in time O(m2) an
m_m table that provides j | d, given j and d, in constant
time.

Therefore, for every leaf i (suffix pi } } } pm), let P(j1),
..., P(jr), be the substrings on the path from leaf i to the root.
Set all N1[i&1, jl] � i&1, l=1, ..., r. Now for every [i, j]
for which N1[i, j | (m&i)]=i, set N2[i, j] � i. For each
[i, j], where i+|P(j)|<m, set N2[i, j] � 0.

Time. O(m3), the time to follow all paths in the Suffix
trie.

Step 4. This step is identical for tables N1 and N2 , so we
describe it for a ``generic'' table N. Initially, all table entries,
where N[i, j]=i are filled. Fix a column j. Repeat the
following procedure until there are no more unfilled entries
in column j.

Let l be the maximum row for which N[l, j] is unfilled.
We want the longest suffix of p1 } } } pl that, concatenated
with P(j), has a certain property (is a prefix of P in N1 and
is an occurrence of P, possibly followed by extra symbols,
in N2). In both cases, we need a suffix of p1 } } } pl that is also
a prefix of p1 } } } pl and in addition has an extra, property.

The KMP automaton gives us a list l1 , ..., lk ,
l1>l2> } } } >lk=0 of prefixes of P that are suffixes of

p1 } } } pl . (The li are the indices of the ends of the prefixes.)
We can follow this list until the first li0

, where N[li0 , j] is
filled. All longer prefixes inherit the same value.

Example. p1 } } } pl=aabaabaa, P(j)=ab. The KMP
automaton tells us that prefixes of P that are suffixes of
p1 } } } pl end at indices 5, 2, and 1. From Step 3, we know
that of these, only l3=1 has an entry in table N1 (e.g.
N1[1, j]=1). But now we know the entries N1[2, j]=
N1[5, j]=N1[1, j]=1.

For all i such that li�li0 set

N[li , j] � {N[li0 , j],
0

if li0 {0;
if li0=0.

Time. Every table entry in the column is filled once.
Every entry accesses at most one previously filled entry (the
one that stops the KMP path). Therefore the time is O(m)
per column, O(m3) for the entire table.

We still need to implement query Q3(P(j), a). P(j) has an
outgoing edge labeled a in the suffix trie iff that child is the
internal substring desired by the query. Additionally, if that
child has an outgoing edge labeled with the end-of-string
character, then that grandchild is the internal suffix string
we desire. The required time and space for query Q3 is then
O(m2) for preprocessing and constant time per query.

4.2. O(n+m2) Time and Space Algorithm

The main contributor to the O(m3) complexity is the size
of the N1 table. Q2 is a query whose parameters are a prefix
and a suffix. Since there are only m prefixes and suffixes, the
N2 table needs only m2 entries and, thus, can be constructed
in time O(m2). This section will show that table N1 can be
reduced to size m2 by reducing the number of columns to m.
We need the following data structure.

The (Compacted) Suffix Tree. The compacted suffix
tree of a string is the uncompacted trie where every path of
degree-2 nodes (that have one child each) is compacted to
a single node.

Observations. 1. The suffix tree of an m-element string
is of size O(m).

2. The suffixes of the string are the leaves of the
compacted suffix tree.

3. If substring pi } } } pj does not appear explicitly as a
suffix tree node then there are two unique nodes b, a corre-
sponding to strings pi } } } pk , i�k<j, and pi } } } pl , l>k,
that appear explicitly in the compacted suffix tree with b
being the parent of a. Denote pi } } } pk by B(pi } } } pj) and
pi } } } pl by A(pi } } } pj). Every pattern location where pi } } } pj

appears is always followed by pj+1 } } } pl .

Implementation. The compacted suffix tree can be con-
structed in time O(m) [9, 10]. However, since our tables are

303PATTERN MATCHING IN Z-COMPRESSED FILES

File: 571J 138906 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 6475 Signs: 4955 . Length: 56 pic 0 pts, 236 mm

of size m2, we can simply construct the uncompacted suffix
trie and then mark every node with more than one child and
every leaf as explicit nodes. Every unmarked node x points
to its first explicit descendent (the node corresponding to
A(x)). The time and space for this construction is O(m2).

We are now ready to reduce the size of table N1 . Simply
choose only the O(m) columns that represent the explicit
nodes. It is clear that the table can be constructed exactly as
in the previous section, and therefore that tP=sP=O(m2).
The only thing we need to show is that tQ1

=O(1).
The Q1 queries are used in steps 1(e) and 2(c) of the text

scanning algorithm. In Step 1(e) the parameters of the query
are a prefix and a single alphabet letter. This can be
implemented using the KMP automaton construction. The
preprocessing time and space is O(m) and the query time is
O(1).

In step 2(c) we have the assignment Prefix �
Q1(Prefix, pi } } } pj). Implement it as follows:

If N1(Prefix, A(pi } } } pj)){0 then

Prefix � N1(Prefix, A(pi } } } pj))+j&i+1

Else Prefix � the longest suffix of pi } } } pj that

is a prefix.

(Recall that the longest suffix that is a prefix is simply the
representing prefix of _.Z[l].)

The following theorem proves that even though we are
querying the prefix with a different parameter, the result is
still correct.

Theorem 4.1. The new value assigned to ``Prefix'' after
our implementation is exactly Q1(Prefix, pi } } } pj).

Proof. Let A(pi } } } pj)=pi } } } pjpj+1 } } } pj+k . If Q1

(Prefix, pi } } } pj)�j&i+1 (the representing prefix of the
concatenation is entirely in pi } } } pj), then there is no suffix
of Prefix that, concatenated with pi } } } pj is a prefix. A
fortiori, adding extra elements after pi } } } pj cannot help,
and N1(Prefix, A(pi } } } pj)) will be 0. Our implementation
then correctly chooses the representing prefix of pi } } } pj .

If Q1(Prefix, pi } } } pj)>j&i+1 it means that the largest
suffix of Prefix, pi } } } pj that is a prefix extends into the
suffix of Prefix. By Observation 3, every time pi } } } pj

appears in the pattern it is followed by pj+1 } } } pj+k .
Thus the part of Q1(Prefix, pi } } } pj) that is a suffix of
Prefix is the same for Q1(Prefix, pi } } } pj) and for
N1(Prefix, A(pi } } } pj)). (Note that the next chunk may not
start with pi+1 } } } pi+k ; however, that will be noticed by the
algorithm in the next step. The only thing of concern now is
to get the correct Q1(Prefix, pi } } } pj).) K

4.3. O(n log m+m) Time and O(n+m) Space Algorithm

Recall that the KMP automaton provides, for each prefix
of a string, a pointer to the longest prefix that is also its

suffix (also known as a border). The collection of such poin-
ters forms a tree, which we call the failure tree. In the failure
tree of a string _, each node represents some prefix of _, and
if _1 } } } _j is the parent of _1 } } } _i , then the edge e between
them has label L(e)=_i+1 } } } _j . In the failure tree, let p(v)
be the parent of v and let E(v) be the edge from p(v) to v.

In [7], Gu, Farach, and Beigel (GFB) introduced the
border tree TS

b =(V, E, L) as follows:

v V is a subset of the prefixes of S such that v # V iff
either L(v)=v or L(E(v)){L(E(p(v))) in the failure tree
of S;

v E=[(u, v) | u, v # V, vOu, c_w # V, vOwOu],
where aOb if a is a suffix of b.

v Edge label L(E(u))=(|u| , |D|, k), where D is a non-
empty string and n is the maximum integer such that PD: is
a prefix of S for 0�:�k and such that PBPDB } } } BPDk.
Here, aBb if aOb and there is no prefix c so that aOcOb.
Note that this condition differs from the edge condition in
that w was constrained to be in V while c can be any prefix
of S.

In [7], it was shown that the border tree of a string can
be constructed in linear time and that its depth is
logarithmic in the original string. This data structure was
in fact defined to answer queries of type Q1 and Q2 . We
can therefore directly apply the GFB solution to get the
following.

Theorem 4.2. [7]. Using the border tree, we can simul-
taneously achieve tP(m)=O(m), sP(m)=O(m), tQ1

(m)=
O(log m), and tQ2

(m)=O(log m).

We still need to implement query Q3(P(j), a) using O(m)
space. This is done similar to the way it is described in Sec-
tion 4.1 but by consulting a compacted suffix tree (instead of
the uncompacted suffix trie). For each internal chunk P(j)

we save its longest prefix that is a compacted suffix tree node
(B(P(j)). If B(P(j))=P(j) then we handle it exactly as in Sec-
tion 4.1. Otherwise, check if a is the expected symbol in the
appropriate location of A(P(j)).

5. THE TRADE-OFF IDEA

5.1. Overview

The algorithm we presented is ``almost'' optimal in the
sense that for small patterns (m�- n) it runs in linear time
and uses linear space. In applications where the data has
many inherent redundancies (e.g., FAX data) the compres-
sion size is significantly less than the uncompressed data.
Our algorithm will serve such applications well. The
advantages of this algorithm are not only its asymptotic
efficiency but also its simplicity and easy coding. In addition,
there are no large constants hidden behind the ``big-Oh.''

304 AMIR, BENSON, AND FARACH

File: 571J 138907 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 5537 Signs: 4331 . Length: 56 pic 0 pts, 236 mm

We cannot ignore, however, another important applica-
tions domain. There exist many systems of small machines
with limited memory that need to analyze large data sets.
Such systems may not afford O(n) space in addition to the
compressed file itself. The question we are faced with is:
``Are there algorithms that allow pattern matching in the
compressed file with o(n) additional space, possibly
requiring more time than O(n)?'' This section presents such
a trade-off.

Our idea is to store only the information that is
absolutely necessary for the pattern matching. The informa-
tion we need is: (i) internal chunks, (ii) suffix chunks, and
(iii) prefix chunks. Lemma 2.5 tells us that the number of
internal chunks is reasonable (O(m2)). Unfortunately it also
tells us that the number of suffix chunks may be
prohibitively large (O(n)). Our solution to this dilemma is
not to store the prefix and suffix chunks, but rather to spend
time computing wether a chunk is a prefix or suffix chunk.

Notation. Let _=s1 } } } sn be a string. The reverse of
string _ is the string _R=sn } } } s1 .

The outline of the new algorithm is sufficiently similar to
Algorithms A and B that we only describe the changes
necessary. As in the previous section, we first present the
algorithm overview and follow with implementation details
and analysis.

A1. Pattern Preprocessing. The only addition to
Algorithm A is

Construct a suffix tree ST_R of _R.

The suffix tree ST_R enables finding the representing
prefix of a prefix chunk. Note that the leaves of ST_R are
exactly the reverses of all the prefixes of _.

B1. Compressed Text Scanning. The overview of the
text scanning algorithm is essentially the same as Algorithm
B. The main difference is that the dictionary construction
and flagging part is entirely discarded. We do, however, add
an instruction to process internal chunks.

If _.Z[l] is an internal chunk and _.Z[l]
concatenated to the first character of
_.Z[l+1] is also an internal chunk, then
the node whose number is l+q is also an
internal chunk.

We need to show how to implement the following func-
tions without the dictionary trie:

1. Check if a node is an internal chunk.

2. Check if a node is a suffix chunk and find the
representing suffix.

3. Check if a node is a prefix chunk and find the
representing prefix.

5.2. O(m2) Extra Space Algorithm

We begin with an implementation that reduces the extra
space to O(m2) but whose time is O(mn - u). In the next
subsection we improve the time by paying more in space.

Internal Chunks

We keep a list of the m2 internal chunks and their T_ node
numbers. This can either be implemented as a balanced
search tree or as a perfect hash table. The balanced search
tree means O(log m) lookup time. The hashing scheme is the
preferred practical choice and gives constant time per
lookup w.h.p. A dynamic-hashing algorithm with O(1)
expected amortized cost per insertion was introduced by
[5].

Every element is verified for being an internal chunk. If it
is, we need to check if the concatenation of the next chunk's
first element still gives us an internal chunk. If the first
symbol of the next chunk is known, such a check can be
implemented in constant time by consulting the suffix tree.
The first element can be found by the following algorithm.

C. Finding the First Element of Chunk _.Z[l].

t � l
while (_.Z[t]>q) do

t � _.Z[t]&q
end
First � a_.Z[t]

Correctness. A recursive application of Corollary 2.3
assures us that the symbol in First is indeed the first symbol
of chunk _.Z[l]. It is important to note that following the
_.Z chunks until the first element is reached really means
following the path on the dictionary trie T_ from a node to
the root.

Time. The total time for verifying for every block
whether it is an internal block is O(n log m) (or O(n) if
hashing is used). Every block needs to know the first
element of the following block. The time for this is the sum
of all paths in T_ . The following lemma shows that this sum
is O(u).

Lemma 5.1. The sum of the lengths of all paths in T_ is
�3u+q.

Proof. For a node v that appears in _.Z, the path from
the root to v is the chunk of uncompressed text represented
by v. Therefore,

� (length of path to v)�u,

where the sum is over all the nodes v in _.Z. But T_

contains other paths as well. Specifically, for every node in

305PATTERN MATCHING IN Z-COMPRESSED FILES

File: 571J 138908 . By:CV . Date:13:07:07 . Time:15:56 LOP8M. V8.0. Page 01:01
Codes: 5821 Signs: 4586 . Length: 56 pic 0 pts, 236 mm

.Z, there is potentially one node created in T that is not
used in _.Z. The sum of path lengths for these nodes is

� [(length of path to v)+1]�u+n.

Finally, there are at most q unused letters in a _ and, there-
fore, q unused nodes of path length one in T_ . In summary,
the sum of the path lengths is �2u+n+q�3u+q. K

Suffix Chunks

Chunks that are exactly suffixes are internal chunks.
These m special internal chunks are handled as other inter-
nal chunks. We need to check for every chunk whether it has
a prefix that is a suffix of the pattern. The same algorithm for
finding the first element in a chunk can be used to traverse
the T_ path from a node toward the root until an exact suffix
is found. The criterion for stopping should be modified to be
either reaching an exact suffix (then this is a suffix chunk
and the exact suffix is the representing suffix) or reaching a
nonsuffix symbol (then this is not a suffix chunk).

Time. For similar reasons to the internal chunks the
traversals cost O(u). However, for every node in the traver-
sal, we check if this is an exact suffix. This adds a
multiplicative log m factor in the worst case making the time
O(u log m) (but O(u) if hashing scheme is used).

Prefix Chunks

Assume we are given the elements of a chunk from the last
to the first. We can use ST_R to find the representing prefix
in time O(min(m, chunk size)). We concentrate, then, on
listing the elements of a chunk from back to front.

By Corollary 2.3 the last element of _.Z[l] is the first
element of _.Z[l+1]. We know how to find the first
element of a chunk. The problem is that finding the last
element of a chunk becomes independent of the chunk size.
Conceivably, one may need to traverse very long paths to
find the last elements of a short chunk. The following lemma
bounds the longest path.

Lemma 5.2. The longest path in _.Z is no longer than
- u.

Proof. A path of length l represents �l
i=1 i=O(l 2)

uncompressed text elements. The longest path relative to u
will be when the tree is a single path. K

Time. If our text is composed predominantly of chunks
whose length is greater than m, then we will search for at
most m last elements per chunk, and the time for each such
element cannot exceed - u. However, the text may be com-
posed of chunks that are all smaller than m elements, and
thus the number of last elements we need to check is no
more than u. The time to check each such element is still no

greater than O(- u). In general, the total time is, then,
O(min(u1.5, mn - u)).

Adding up the time for all types of chunks and keeping in
mind that n - u�u we get the following.

Total Algorithm Time. O(mn - u+n log m+u)=
O(mn - u).

Note that it is easy to convert this algorithm to run with
the same time bounds but with only O(m) space. We
described the O(m2) version because it is a special case of
our trade-off and helps clarify the next section.

5.3. O(n�c+m2) Extra Space Algorithm

The main cost in the time of the O(m2) space algorithm
was accessing elements in the dictionary tree. We will
introduce extra pointers in order to shortcut this tree search.
The idea is to store data for all the nodes in the cith level of
T_ , i=1, ..., height(T_)�c. The information we keep is:

v node number.

v first element of chunk.

v representing prefix.

v representing suffix.

In addition we keep all information about the internal
and exact suffix chunks as described in the previous section.
We run the algorithm of Section 5.1 with the following
implementation:

1. Internal Chunks. Check whether the chunk is internal
as in Section 5.2. Find the first symbol of the next chunk by
traversing the path toward the root. However, there is no
need to run more than c elements since then we reach a
stored node and access that information in constant time.

Total Time. O(nc+n log m) (O(nc) using hashing).

2. Suffix Chunks. Check whether any of the previous
elements in the path toward the root is an exact suffix. This
is done as in Section 5.2. However, there is no need to check
more than at most c nodes, since by then we reach a stored
node and access the information in constant time.

Total Time. O(nc log m) (O(nc) using hashing).

3. Prefix Chunks. Assume that c<m and c<- u.
Within at most c elements on the path toward the root there
is a stored node x with representing prefix X. Suppose the
substring represented by the path from x to _.Z[l] is
internal string P(j). Then Q1(X, P(j)) gives us _.Z[l]'s
representing prefix in constant time. P(j) has at most c
elements, each found in time at most O(c).

Total Time. O(nc2) for c<m, - u. In general the time is
O(n } min(c, m) min(c, - u)).

306 AMIR, BENSON, AND FARACH

File: 571J 138909 . By:CV . Date:13:07:07 . Time:15:55 LOP8M. V8.0. Page 01:01
Codes: 5549 Signs: 4598 . Length: 56 pic 0 pts, 236 mm

Total Algorithm Time. The worst case time is O(nc2+
n log m+nc log m+m2) for c<m, - u. The time using
hashing is O(nc2+m2).

In general, the worst case time is O(n } min(c, m)
min(c, - u)+n log m+nc log m+m2) and the time using
hashing is O(n } min(c, m) min(c, - u)+m2).

6. REAL LIFE BEHAVIOR

We remarked previously that the success of the compres-
sion depends on the application domain. The best LZW
compression has n=- u (Lemma 5.2). Under these
circumstances, Algorithms A for preprocessing and B for
text scanning are probably the best choices.

An interesting domain, where LZW compression is used,
is alphanumeric files of texts and programs. Welch [11]
reports studies he has done on the LZW compression of
such files. Some of his conclusions are

1. The LZW compression of such files normally yields
n=u�2.

2. Breaking a large file into smaller ones and compressing
separately does not significantly alter the compression size.

The conclusions we can draw from these facts is that the dic-
tionary trie is almost a complete tree. This is due to the fact
that for a complete tree the sum of all the paths' lengths (O(u))
is O(n). Thus the expected path length is O(log n). If this is the
case then the algorithm we described in Section 5.2 will run in
expected time O(n log 2 n+m2) and use space O(m2).

In reality, however, one can use heuristics that will further
improve the time. The log 2 n factor comes from the need to
find a long prefix. In reality, we will stumble very early and
not need to check too many paths per chunk. Furthermore,
it will be advisable to first establish the suffix and then check
the prefix. Most chunks will disqualify as prefix chunks
simply because their length is too short. There will be very
few chunks where we will actually look for the prefix. Under
the circumstances reported by Welch the time for the
compressed matching algorithm described in Section 5.2 is
likely to be O(n log m+m2) and the space O(m2).

7. OPEN PROBLEMS

In the nascent area of compressed matching it is harder to
find a closed problem than an open problem. Start with
exact matching in the LZW compression. We presented two

implementations, neither of which is optimal. We would like
to see a O(n+m) time and space algorithm.

For the model requiring as little extra space as possible,
one would like an algorithm with O(m) extra space and
better time than O(mn - u) that we report. Optimally, we
would want the time to be O(n), but anything between the
two will be welcome.

In addition to the above two problems, one can go
through the compression literature and try to find efficient
pattern matching algorithms for the various known
compressions. An interesting step in this direction would be
the Lempel�Ziv compression.

Finally, for any fixed compression we would like to see
more than an algorithm for the simple pattern matching.
Important problems to solve are approximate matching,
dictionary matching, matching with ``don't cares,'' and
multidimensional matching. Each of these problems needs
efficient parallel algorithms as well.

REFERENCES

1. A. Amir and G. Benson, ``Efficient Two-Dimensional Compressed
Matching,'' in Proceedings, Data Compression Conference, Snow Bird,
Utah, March 1992, p. 279.

2. A. Amir and G. Benson, ``Two-Dimensional Periodicity and Its
Application,'' in Proceedings 3rd Symposium on Discrete Algorithms,
Orlando, FL, Jan. 1992, p. 440.

3. A. Amir, G. Benson, and M. Farach, ``Optimal Two-Dimensional
Compressed Matching,'' in Proceedings of 21st International Collo-
quium on Automata, Languages and Programming, 1994.

4. A. Amir, G. M. Landau, and U. Vishkin, J. Algorithms 13 (1) (1992), 2.
5. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H.

Rohnert, and R. Tarjan, ``Dynamic Perfect Hashing: Upper and Lower
Bounds,'' in Proceedings, 20th Annu. ACM Symp. on Theory of Com-
puting, October 1988, p. 524.

6. T. Eilam-Tsoreff and U. Vishkin, ``Matching Patterns in a String Sub-
ject to Multilinear Transformations,'' in Proceedings International
Workshop on Sequences, Combinatorics, Compression, Security and
Transmission, Salerno, Italy, June 1988.

7. M. Gu, M. Farach and R. Beigel, Personal communication.
8. D. E. Knuth, J. H. Morris, and V. R. Pratt, SIAM J. Comput. 6 (1977),

323.
9. E. M. McCreight, J. Assoc. Comput. Mach. 23 (1976), 262.

10. P. Weiner, ``Linear Pattern Matching Algorithm,'' in Proceed-
ings, 14th IEEE Symposium on Switching and Automata Theory, 1973,
p. 1.

11. T. A. Welch, IEEE Comput. 17 (1984), 8.
12. J. Ziv and A. Lempel, IEEE Trans. Inform. Theory IT-23 (3) (1977),

337.

307PATTERN MATCHING IN Z-COMPRESSED FILES

